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In this paper, the propagation of time-harmonic thermoelastic plane waves is stud-

ied in an infinite nonlocal elastic continuum. The type III Green-Naghdi model (with

energy dissipation) of generalized thermoelasticity and the Eringen’s nonlocal elas-

ticity model are adopted to address this problem. We found two sets of the coupled

longitudinal waves which are dispersive in nature and experience attenuation. In addi-

tion to the coupled waves, there also exists one independent vertically shear-type wave

which is dispersive but experiences no attenuation. All these waves are found to be

influenced by the elastic nonlocality parameter. Furthermore, the shear-type wave is

found to face a critical frequency, while the coupled longitudinal waves may face criti-

cal frequencies conditionally. Reflection phenomenon of an incident coupled longitu-

dinal waves from a rigid and thermally insulated boundary surface of a homogeneous

and isotropic nonlocal thermoelastic half-space is investigated. Using these boundary

conditions, the formulae for various reflection coefficients and their respective energy

ratios are presented. For a particular model, various graphs are plotted to analyze the

behavior of the phase speeds, reflection coefficients and their respective energy ratios.

The amplitude ratios of the reflected waves and their respective energy ratios are deter-

mined analytically. For a particular model, the effect of elastic nonlocality parameter

on the variations of phase speeds, attenuation coefficients, amplitude ratios and cor-

responding energy ratios of the reflected waves are presented graphically. Finally,

analysis of the various results have been interpreted.

K E Y W O R D S
dispersion, energy partition, green-nagdhi model, nonlocal, reflection

1 INTRODUCTION

Stress tensor at any reference point in a nonlocal continuum depends not only on the strain at that point but also on the strain at

all other points of the continuum [1]. This observation is in accordance with the atomic theory of lattice dynamics and exper-

imental observations on phonon dispersion. In the limiting case, when the effect of strain at points other than 𝑥 are ignored,

one can recover the classical (local) elasticity. In the year 1971, Edelen and Laws [2] developed the thermodynamics of sys-

tems with nonlocality. In the same year Edelen et al. [3] introduced nonlocal continuum mechanics. Following these pioneer

works, Eringen and Edelen [4] formulated nonlocal elasticity in 1972. Uniqueness in the linear theory of nonlocal elasticity was

proved by Altan [5]. Chirita [6] investigated some boundary value problems in the context of the theory of nonlocal elasticity.

Narendra and Gopalakrishnan [7] studied ultrasonic wave characteristics of nanorods via nonlocal strain gradient models. They

also studied the nonlocal scale effect of ultrasonic wave characteristics of nanorods [8]. Narendar et al. [9] investigated the

prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural

mechanics, nonlocal elasticity and wave propagation. Narendra [10] formulated spectral finite element and nonlocal continuum
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mechanics based formulation to study torsional wave propagation in nanorods. Malagu et al. [11] studied one-dimensional non-

local elasticity for tensile single-walled carbon nanotubes through a molecular structural mechanics characterization. Khurana

and Tomar [12] extended the theory of nonlocal elasticity to nonlocal theory of microstretch elasticity and then they investigated

wave propagation in nonlocal microstretch solid. Sing [13] studied wave propagation in nonlocal elastic solid with voids.

The theory of nonlocal elasticity has been extended to nonlocal thermoelasticity by many researchers during the last five

decades. Eringen [14] first proposed the theory of nonlocal thermoelasticity in the year 1974. He summarized the balance

laws and entropy inequality obtained by himself in the theory of nonlocal elasticity. He derived the constitutive relations and

some nonlocal moduli of the nonlocal thermoelasticity based on two basic constitutive axioms proposed by himself. After three

years of Eringen’s nonlocal theory of thermoelasticity, Balta and Suhubi [15] extended this theory to the theory of nonlocal

generalized thermoelasticity within the framework of nonlocal continuum mechanics. They derived the constitutive relations

through the systematic use of the nonlocal version of the generalized thermodynamics. The constitutive relations are linearized

and field equations are provided for homogeneous isotropic solids. They also studied thermal waves in rigid conductors using

the theory of nonlocal generalized thermoelasticity. Yu et al. [16] proposed size-dependent generalized thermoelasticity using

Eringen’s nonlocal model. Yu et al. [17] also introduced nonlocal thermoelasticity based on nonlocal heat conduction and

nonlocal elasticity. They also applied these theories [16, 17] to study some one-dimensional problems. Bachher and Sarkar

[18] extended the nonlocal theory of elasticity with voids [13] to the nonlocal theory of thermoelastic materials with voids

and fractional derivative heat transfer. They also applied this new theory to study the one-dimensional transient response of a

thermoelastic nonlocal infinite medium with voids. Li et al. [19] investigated the reflection and transmission of elastic waves

at an interface with consideration of couple stress and thermal wave effects. Recently, Sarkar and Tomar [20] studied plane

waves in nonlocal thermoelastic solid with voids and thermal relaxation time and Mondal and Sarkar [21] reported waves in

dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity.

Jeffreys [22] considered the problems of reflection of plane harmonic waves at a solid half-space. Gutenberg [23] obtained

energy relation of reflected and refracted seismic waves. Reflection and refraction of elastic waves with seismological appli-

cations has been done by Knott [24]. Beevers and Bree [25] discussed wave reflection problems in linear thermoelasticity.

Sinha and Sinha [26] and Sinha and Elsibai [27] discussed the reflection of the thermoelastic waves from the free surface of a

solid half-space and at the interface of two semi infinite media in welded contact in the context of generalized thermoelastic-

ity. Sharma et al. [28] investigated the problem of thermoelastic wave reflection from the thermally insulated and isothermal

stress-free as well as rigidly fixed boundaries of a solid half-space in the context of different linear theories of generalized

thermoelasticity vz. Green-Nagdhi (GN-II) [29], Lord-Shulman (LS) [30] and Green-Lindsay (GL) [31] theories. The angles

of incidence and reflection of 𝑃 - and 𝑆𝑉 - waves with normal to the half-space have not been considered in their works.

Das et al. [32] studied the problem of reflection of thermoelastic wave from a thermally insulated and isothermal stress-free

boundary of a solid half-space in the context of Green-Naghdi model II [29]. They preferred to investigate the problem by

specifying the angle of incidence and reflection with the normal to the half-space. Kumar et al. [33] studied thermomechani-

cal interactions in a transversely isotropic magneto-thermoelastic with and without energy dissipation with combined effects

of rotation, vacuum and two temperatures. Lata [34, 35] discussed the reflection and refraction of plane waves in layered

nonlocal elastic and anisotropic thermoelastic medium and effect of energy dissipation on plane waves in sandwiched lay-

ered thermoelastic medium. Othman and Song [36–39] studied several problems on reflection of thermoelastic waves under

different conditions.

The present contribution is concerned with the propagation of time-harmonic thermoelastic plane waves is studied in an infi-

nite nonlocal elastic continuum. The type III Green-Naghdi model [40] (with energy dissipation) of generalized thermoelasticity

and the Eringen’s nonlocal elasticity [1, 4] model are adopted to address this problem. We found two sets of the coupled lon-

gitudinal waves which are dispersive in nature and experience attenuation. In addition to the coupled waves, there also exists

one independent vertically shear-type wave which is dispersive but experiences no attenuation. All these waves are found to be

influenced by the elastic nonlocality parameter. Furthermore, the shear-type wave is found to face a critical frequency, while

the coupled longitudinal waves may face critical frequencies conditionally. Reflection phenomenon of an incident coupled lon-

gitudinal waves from a rigid and thermally insulated boundary surface of a homogeneous and isotropic nonlocal thermoelastic

half-space is investigated. Using these boundary conditions, the formulae for various reflection coefficients and their respec-

tive energy ratios are presented. For a particular model, various graphs are plotted to analyze the behavior of the phase speeds,

reflection coefficients and their respective energy ratios. The amplitude ratios of the reflected waves and their respective energy

ratios are determined analytically. For a particular model, the effect of elastic nonlocality parameter on the variations of phase

speeds, attenuation coefficients, amplitude ratios and corresponding energy ratios of the reflected waves are presented graphi-

cally. Finally, analysis of the various results have been interpreted.
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F I G U R E 1 Incident and reflected thermoelastic waves at the

surface 𝑧 = 0

2 GOVERNING EQUATIONS AND FORMULATION OF THE PROBLEM

We consider a linear, homogenous and isotropic nonlocal thermoelastic solid in a rectangular Cartesian coordinate system𝑂𝑥𝑦𝑧,

initially un-deformed and at uniform temperature 𝑇0. Let the origin of the coordinate system 𝑂𝑥𝑦𝑧 be fixed at any point on the

boundary surface 𝑧 = 0 of the half-space 𝑧 ≥ 0 with 𝑧− axis directed normally inside the medium and 𝑥−axis is along the

horizontal direction. The 𝑦−axis is taken in the direction of the line of intersection of the plane wavefront with the plane surface.

A schematic diagram of the present problem is illustrated in Figure 1.

For a two-dimensional plain strain state parallel to the 𝑥 − 𝑧 plane, all the field variables may be dependent on 𝑥, 𝑧 and 𝑡 only.

So, the displacement vector 𝑢 and the temperature field Θ may take the forms

𝑢(𝑥, 𝑧, 𝑡) = (𝑢, 0, 𝑤), Θ = Θ(𝑥, 𝑧, 𝑡).

The basic governing equations for a linear, homogeneous, isotropic, nonlocal thermoelastic solid of type III with zero body

force and without considering heat source are read from Das et al. [42] and Sarkar et al. [43] as follows:

𝜇∇2𝑢 + (𝜆 + 𝜇)∇⃗(∇⃗ ⋅ 𝑢) − 𝛾∇⃗Θ = 𝜌(1 − 𝜀2∇2) ̈⃗𝑢, (1)

(
𝐾∗ +𝐾Θ

𝜕

𝜕𝑡

)
∇2Θ = 𝜌𝐶𝐸Θ̈ + 𝛾𝑇0∇⃗ ⋅ ̈⃗𝑢, (2)

(1 − 𝜀2∇2)𝜏 = 𝜏𝐿 = 𝜇
(
∇⃗𝑢 + ∇⃗𝑢𝑇

)
+
(
𝜆∇⃗ ⋅ 𝑢 − 𝛾Θ

)
𝛿𝑖𝑗𝐼, (3)

where ∇2 ≡ 𝜕2∕𝜕𝑥2 + 𝜕2∕𝜕𝑧2, 𝜀 (= 𝑒0𝑎) is the elastic nonlocal parameter [4, 13] having the dimension of length, a and 𝑒0,

respectively are an internal characteristic length and a constant, 𝜏 is the stress tensor, 𝜏𝐿 stands for stress tensor in local ther-

moelastic medium, 𝜆, 𝜇 are Lame’s constants, 𝛾 = (3𝜆 + 2𝜇)𝛼𝑇 is the thermoelastic coupling constant, 𝛼𝑇 is the coefficient of

volume expansion, Θ is the temperature change over the initial reference temperature 𝑇0 of the medium, 𝛿𝑖𝑗 is the Kronecker

delta, 𝜌 is the mass density, 𝐾∗(> 0) is a material constant characteristic of the medium, 𝐾Θ is the thermal conductivity, 𝐶𝐸

is the specific heat at constant strain, 𝐼 is the identity tensor and 𝑖, 𝑗 = 𝑥, 𝑧. Note that in the above equations, a comma fol-

lowed by a suffix denotes a spatial derivative, a superposed dot stands for a time-differentiation and an upper arrow represents

a vector quantity.

The system of Equations (1) and (2) is fully hyperbolic in nature and as such both the elastic and thermal waves propagate

with finite speed. Equations (1)–(3) describe the nonlocal generalized thermoelasticity theory based on the Green-Naghdi theory

with energy dissipation [40] that will be used in the sequel.

In order to make Equations (1)–(3) dimensionless, the following quantities are introduced

(
𝑥′, 𝑧′, 𝜀′

)
= 1

𝑙
(𝑥, 𝑧, 𝜀),

(
𝑢′, 𝑤′) = (𝜆 + 2𝜇)

𝛾𝑙𝑇0
(𝑢,𝑤), 𝑡′ = 𝜐

𝑙
𝑡, Θ′ = Θ

𝑇0
, 𝜏′𝑖𝑗 =

𝜏𝑖𝑗

𝛾𝑇0
, (4)

where 𝑙 is a standard length and 𝜐 is a standard speed. Inserting (4) into the Equations (1)–(3) and suppressing the primes, we

can write

𝑐2𝑠∇
2𝑢 + (𝑐2𝑝 − 𝑐2𝑠 )∇⃗(∇⃗ ⋅ 𝑢) − 𝑐2𝑝∇⃗Θ = (1 − 𝜀2∇2) ̈⃗𝑢, (5)
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(
𝑐2Θ + 𝐾̄

𝜕

𝜕𝑡

)
∇2Θ − Θ̈ − 𝜖Θ∇⃗ ⋅ ̈⃗𝑢 = 0, (6)

(1 − 𝜀2∇2)𝜏 = 𝜏𝐿 =
(
1 − 2𝛿2

)
(∇⃗ ⋅ 𝑢)𝛿𝑖𝑗𝐼 + 𝛿2

(
∇⃗𝑢 + ∇⃗𝑢𝑇

)
− Θ𝛿𝑖𝑗𝐼, (7)

where

𝛿 =
𝑐𝑠

𝑐𝑝
, 𝑐2𝑝 = 𝜆 + 2𝜇

𝜌𝜐2
, 𝑐2𝑠 = 𝜇

𝜌𝜐2
, 𝑐2Θ = 𝐾∗

𝜌𝐶𝐸𝜐
2 , 𝐾̄ =

𝐾Θ
𝜌𝐶𝐸𝜐𝑙

, 𝜖Θ =
𝛾2𝑇0

𝜌𝐶𝐸(𝜆 + 2𝜇)
.

Here, 𝜖Θ is defined as the dimensionless thermoelastic coupling constant. We now introduce the scalar and vector potentials,

namely 𝜙 and 𝜓⃗ respectively through the Helmholtz vector decomposition technique as

𝑢 = ∇⃗𝜙 + ∇⃗ × 𝜓⃗ , ∇⃗ ⋅ 𝜓⃗ = 0⃗, (8)

Plugging Equation (8) into Equations (5)–(7), we obtain

𝑐2𝑝∇
2𝜙 − (1 − 𝜀2∇2)𝜙̈ = 𝑐2𝑝Θ, (9)

𝑐2𝑠∇
2𝜓⃗ − (1 − 𝜀2∇2) ̈⃗𝜓 = 0⃗, (10)

(
𝑐2Θ + 𝐾̄

𝜕

𝜕𝑡

)
∇2Θ − Θ̈ − 𝜖Θ∇2𝜙̈ = 0. (11)

We note that the temperature field Θ is coupled with the potential 𝜙. Thus, Equations (9) and (11) together create two sets of

coupled longitudinal thermal-elastic wave. We also observed from Equation (10) that the potential 𝜓⃗ is uncoupled with Θ and

𝜙, where

𝜓⃗ = (0, 𝜓, 0). (12)

Choosing (12), the potential 𝜓⃗ corresponds to the displacement motion in the 𝑥 − 𝑧 plane due to a vertically shear type

(𝑆𝑉 -type) wave, governed by the equation

𝑐2𝑠∇
2𝜓 = (1 − 𝜀2∇2)𝜓̈ . (13)

Hence, we conclude that the thermal wave effect has no influence on the SV-type wave propagation in the case of nonlocal

thermoelasticity of type III.

3 DISPERSION RELATION AND ITS SOLUTIONS

For a plane harmonic wave propagating in the 𝑥′−direction with wave speed 𝑐 (see Figure 1), we can take

(𝜙,Θ) = (𝐴𝜙,𝐴Θ) exp{𝜄(𝑘𝑥′ − 𝜔𝑡)}, (14)

where 𝐴𝜙, 𝐴Θ are constants representing the wave amplitudes, 𝜄 =
√
−1, 𝑘 is the dimensionless complex wavenumber and

𝜔 (= 𝑘𝑐) is the dimensionless assigned real angular frequency.

From Figure 1, 𝑥′ is obtained as 𝑥′ = 𝑥 sin 𝜃0 − 𝑧 cos 𝜃0, where 𝜃0 is the angle of incidence of the incident wave with the

normal to the surface 𝑧 = 0. Hence, Equation (14) becomes

(𝜙,Θ) = (𝐴𝜙,𝐴Θ) exp{𝜄𝑘(𝑥 sin 𝜃0 − 𝑧 cos 𝜃0) − 𝜄𝜔𝑡}. (15)
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Inserting Equation (15) into Equations (9) and (11), we get[
𝑘2(𝑐2𝑝 − 𝜀2𝜔2) − 𝜔2

]
𝐴𝜙 + 𝑐2𝑝𝐴Θ = 0, (16)

− 𝜖Θ𝜔
2𝑘2𝐴𝜙 +

[
𝜔2 − 𝑘2

(
𝑐2Θ − 𝜄𝜔𝐾̄

)]
𝐴Θ = 0. (17)

For non-trivial solutions of the system of Equations (16) and (17) for the unknowns 𝐴𝜙 and 𝐴Θ, the coefficient matrix must

be singular, which leads to

𝑐4 − 𝐿1𝑐
2 + 𝐿2 = 0, (18)

where

𝐿1 = (1 + 𝜖Θ)𝑐2𝑝 +
(
𝑐2Θ − 𝜄𝜔𝐾̄

)
− 𝜀2𝜔2, 𝐿2 =

(
𝑐2Θ − 𝜄𝜔𝐾̄

)(
𝑐2𝑝 − 𝜀2𝜔2

)
. (19)

The quadratic Equation (18) in 𝑐2 is the general dispersion relation for the wave propagation in nonlocal thermoelastic solids

of type III. Note that the coefficient 𝐿1 is complex while 𝐿2 is real for 𝜔 > 0. The roots of the dispersion relation (18) are

𝑐21,2 =
1
2

[
𝐿1 ±

√
𝐿2
1 − 4𝐿2

]
. (20)

Here 𝑐21 corresponds to ‘+’ sign and 𝑐22 corresponds to ‘-’ sign. Corresponding to these roots, there exist two sets of coupled

longitudinal waves, namely, a coupled elastic wave (𝐶𝑃−wave) and a coupled thermal wave (𝐶𝑇−wave) whose phase speeds

𝑉𝑗 and attenuation coefficients 𝑄𝑗 are given by (cf. Sarkar et al. [43], Achenbach [44])

𝑉𝑗 =
(
ℜ(𝑐𝑗)

)2 + (
ℑ(𝑐𝑗)

)2
ℜ(𝑐𝑗)

, 𝑄𝑗 =
−𝜔ℑ(𝑐𝑗)(

ℜ(𝑐𝑗)
)2 + (

ℑ(𝑐𝑗)
)2 , (21)

where ℜ(⋅) and ℑ(⋅) denote the real and imaginary parts. Since these roots are complex, the coupled longitudinal waves are

attenuating. Also, the CP- and the CT-waves are dispersive in nature.

3.1 Identification of the phase speeds of CP- and CT-waves
For uncoupled local thermoelasticity (UCT) (𝜖Θ = 0, 𝜀 = 0), the roots 𝑐1 and 𝑐2 become

𝑐1 = 𝑐𝑝, 𝑐2 =
√

𝑐2Θ − 𝜄𝜔𝐾̄.

Thus, we conclude that for the present problem (𝜖Θ ≠ 0 and 𝜀 ≠ 0), while 𝑉1 represents the speed of a𝐶𝑃−wave, 𝑉2 represents

the speed of a 𝐶𝑇−wave (according to our consideration of the sign of 𝑐21 and 𝑐22 ).

Proceeding in the same way as above, we may seek the solution for the 𝑆𝑉 −type wave governed by the Equation (13) as

𝜓 = 𝐴𝜓 exp{𝜄𝑘3(𝑥 sin 𝜃0 − 𝑧 cos 𝜃0) − 𝜄𝜔𝑡}, (22)

where 𝐴𝜓 is the amplitude of the wave, 𝑘3 and 𝑐3 are the wavenumber and the phase speed, respectively of the SV-type wave in

the nonlocal medium. Using (22) in (13), we get

𝑐3 =
√

𝑐2𝑠 − 𝜖2𝜔2. (23)

The above result shows that the classical transverse wave speed, 𝑐𝑠 is reduced in the nonlocal thermoelastic medium of type

III due to the presence of the elastic nonlocality. The expression (23) also shows that the SV-type wave is weakly dispersive in

case of nonlocal thermoelasticity of type III in contrast to the local thermoelasticity of type III. The phase speed, 𝑉3 and the

attenuation coefficient, 𝑄3 of the SV-type wave can be obtained by using the same formulae as noted in (21).
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3.2 Further discussions
Here we shall investigate the frequency range of CP-, CT- and SV-type waves in the nonlocal thermoelastic solid of type III as

follows:

(i) To find out the frequency range for the SV-type wave traveling with speed 𝑐3, we see from (23) that 𝑐3 = 0 at 𝜔 = 𝜔𝑐3
=

𝑐𝑠∕𝜀 provided 𝜀 ≠ 0. For 𝜔 > 𝜔𝑐3
, we observe that the speed 𝑐3 will be purely imaginary and that generates a standing damped

wave in time whose amplitude decays exponentially with time 𝑡. Thus we can declare that this wave is a propagating wave in

the frequency range 0 < 𝜔 < 𝜔𝑐3
. Beyond 𝜔 = 𝜔𝑐3

, the wave is no more a propagating wave. Here 𝜔 = 𝜔𝑐3
act as the critical

frequency for the SV-type wave.

(ii) Now, we determine the frequency range for the CP- and CT-waves. The coefficient 𝐿2 in (19) vanishes at 𝜔 = 𝜔𝑐1
= 𝑐𝑝∕𝜀

provided 𝜀 ≠ 0. It can also be verified that ℜ(𝐿1) > 0 and ℑ(𝐿1) < 0 at the frequency 𝜔 = 𝜔𝑐2
. At 𝜔 = 𝜔𝑐2

,

𝑐21 = 𝐿1(𝜔 = 𝜔𝑐2
) = 𝜖Θ𝑐

2
𝑝 + 𝑐2Θ − 𝜄𝜔𝐾̄ and 𝑐22 = 0,

which in turn means that the CT-wave disappears while the CP-wave travels whose amplitude decays exponentially with time.

(iii) In the entire range of frequency (0 < 𝜔 < ∞), the values of 𝑉𝑗 and 𝑄𝑗 for the CP- and CT-waves are given by (21). In

the entire range of frequency, both of the CP- and CT-waves propagate except at the frequency 𝜔 = 𝜔𝑐2
, where only one of

the waves can travel and the other one disappears. Similar to the SV-type wave, we can say that the CT-wave is a propagating

wave for 0 < 𝜔 < 𝜔𝑐2
and is no more a propagating wave for 𝜔 ≥ 𝜔𝑐2

. For 𝜔 ≥ 𝜔𝑐2
, the CT-wave represents merely a distance

decaying vibrations. Thus 𝜔 = 𝜔𝑐2
act as a critical frequency for the CT-wave.

3.3 Nature of the wave speeds of the propagating waves at high and low frequencies
In this subsection, we wish to look at the behavior of the phase speeds of the different waves at high and low frequencies.

3.3.1 Low frequency (𝝎 → 𝟎)
From Equation (20), we obtain the limiting values of 𝑐1 and 𝑐2 at low frequency as,

𝑐21,2 =
(1 + 𝜖Θ)𝑐2𝑝 + 𝑐2Θ ±

√(
(1 + 𝜖Θ)𝑐2𝑝 − 𝑐2Θ

)2
+ 4𝜖Θ𝑐2𝑝𝑐2𝑠

2
. (24)

For UCT (𝜖Θ = 0), we have 𝑐1 = 𝑐𝑝 and 𝑐2 = 𝑐Θ. So, it is interesting to note that the wave speeds are independent of the elastic

nonlocality present in the medium at low frequency. Equation (23) shows that at low frequency, 𝑐3 = 𝑐𝑠, i.e., the wave speed 𝑐3
of the 𝑆𝑉 −type wave remains the same as to the speed 𝑐𝑠 of the classical shear wave.

3.3.2 High frequency (𝝎 → ∞)
We can notice from Equation (23) that the speed of the SV-type wave, 𝑐3 decreases first with an increase in 𝜔 and goes to zero at

𝜔 = 𝜔𝑐3
. Beyond 𝜔 = 𝜔𝑐3

, the speed 𝑐3 becomes purely imaginary and the absolute value of 𝑐3 goes on increasing with a further

increase of 𝜔. Equation (20) exhibits that beyond 𝜔 = 𝜔𝑐1
, the absolute values of 𝑐𝑗 (𝑗 = 1, 2) increase with further increase of

the frequency 𝜔.

3.4 Special cases
3.4.1 Nonlocal generalized thermoelasticity of type II
For 𝐾̄ ≪ 𝑐2Θ (i.e. at a very low thermal conductivity), we may neglect 𝐾̄ and obtain the following expressions for the roots 𝑐1,2:

𝑐21,2 =
1
2

[
(1 + 𝜖Θ)𝑐2𝑙 + 𝑐2Θ − 𝜀2𝜔2 ±

√
Δ
]
, (25)

where

Δ =
[
(1 + 𝜖Θ)𝑐2𝑝 − 𝑐2𝑡 − 𝜀2𝜔2

]2
+ 4𝜖Θ𝑐2𝑝 (𝑐

2
Θ + 𝜀2𝜔2) + 4𝜀2𝜔2𝑐2Θ.
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The expression in (25) tells us that the CP- and CT-waves are dispersive in nature and experience attenuation in the case

of nonlocal medium. If we neglect the elastic nonlocality from the medium (𝜀 = 0), then we can recover all the results of

Chandrasekharaiah [41] (in absence of rotational effect).

3.4.2 Thermoelastic undamped waves without energy dissipation (Green-Naghdi theory of type
II) [29]
If the elastic nonlocality is absent from the medium, then at a very low thermal conductivity (𝐾̄ ≪ 𝑐2Θ), the dispersion relation

(18) is simplified to

𝑐2𝑝𝑐
2
Θ𝑘

4 − 𝑘2𝜔2[(1 + 𝜖Θ)𝑐2𝑙 + 𝑐2Θ
]
+ 𝜔4 = 0, (26)

which was earlier obtained by Das et al. [32]. The roots of (26) are

𝑘21,2 =
𝜔2

2𝑐2𝑝𝑐
2
Θ

[
(1 + 𝜖Θ)𝑐2𝑙 + 𝑐2Θ ∓

√{
(1 + 𝜖Θ)𝑐2𝑙 − 𝑐2Θ

}2 + 4𝜖Θ𝑐2𝑙 𝑐
2
Θ

]
. (27)

The expressions in (27) are exactly same as in Das et al. [32]. In this case, 𝑘𝑗 (𝑗 = 1, 2) are purely real, and therefore these roots

provide the wavenumber of two non-dispersive and non-attenuating coupled longitudinal waves (CP- and CT-waves) which are

in complete agreement with the results reported by Das et al. [32]. Similarly, putting 𝜀 = 0 into (23), we see that the 𝑆𝑉 −type

wave speed 𝑐3 in the local thermoelastic medium of type II reduces to the classical SV-wave speed, 𝑐𝑠 [32].

3.4.3 Nonlocal elastic solid
If we neglect the thermal wave effect, then we shall be left with a nonlocal elastic medium only. In this case, the speeds of

the coupled longitudinal waves reduce to 𝑐1 =
√

𝑐2𝑝 − 𝜀2𝜔2 and 𝑐2 = 0. The speed of the SV-type wave remains the same as

𝑐3 =
√

𝑐2Θ − 𝜀2𝜔2, since this wave is independent of the thermal field. It is quite interesting to note that in a nonlocal elastic

medium, the square of the speeds of the classical longitudinal wave (P-wave) as well as the classical shear wave (SV-wave)

are frequency dependent (dispersive) and both are reduced by an amount equal to 𝜀2𝜔2, a result earlier obtained by [13] in the

relevant medium. The frequencies 𝜔 = 𝜔𝑐𝑗
(𝑗 = 1, 3) act as the critical frequencies for the respective waves, beyond which the

waves are no more propagating waves.

3.4.4 Uncoupled nonlocal thermoelasticity
In this theory, we obtain the roots 𝑐1 and 𝑐2 as

𝑐1 =
√

𝑐2𝑝 − 𝜀2𝜔2, 𝑐2 =
√

𝑐2Θ − 𝜄𝜔𝐾̄. (28)

From the above expressions, one can easily observe that the elastic wave and the thermal wave are dispersive and experience

attenuation in contrast to the uncoupled local thermoelasticity. We also note that, in case of uncoupled local thermoelasticity,

the elastic wave is non-attenuating as well as non-dispersive while the thermal wave is dispersive and experiences attenuation.

4 REFLECTION OF THERMOELASTIC WAVES FROM A THERMALLY
INSULATED RIGID SURFACE

Let a train of CP-wave having amplitude 𝐴0 and phase speed 𝑉1 is made incident on the surface 𝑧 = 0 making an angle 𝜃0 with

the normal to the free surface 𝑧 = 0 as shown in Figure 1. Assuming that the radiation in a vacuum is neglected, when it impinges

the boundary 𝑧 = 0, three reflection waves in the medium are created. Suppose the reflected CP-, CT- and SV-type waves make

angles 𝜃1, 𝜃2 and 𝜃3, respectively with the positive 𝑧−axis. Then, the complete structures of the wave fields consisting of the

incident and reflected waves may be expressed as

𝜙 = 𝐴0 exp
{
𝜄𝑘1(𝑥 sin 𝜃0 − 𝑧 cos 𝜃0) − 𝜄𝜔𝑡

}
+

2∑
𝑗=1

𝐴𝑗 exp
{
𝜄𝑘𝑗(𝑥 sin 𝜃𝑗 + 𝑧 cos 𝜃𝑗) − 𝜄𝜔𝑡

}
, (29)
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Θ = 𝜁1𝐴0 exp
{
𝜄𝑘1(𝑥 sin 𝜃0 − 𝑧 cos 𝜃0) − 𝜄𝜔𝑡

}
+

2∑
𝑗=1

𝜁𝑗𝐴𝑗 exp
{
𝜄𝑘𝑗(𝑥 sin 𝜃𝑗 + 𝑧 cos 𝜃𝑗) − 𝜄𝜔𝑡

}
, (30)

𝜓 = 𝐵1 exp
{
𝜄𝑘3(𝑥 sin 𝜃3 + 𝑧 cos 𝜃3) − 𝜄𝜔𝑡

}
, (31)

where 𝐴1, 𝐴2 and 𝐵1 represent the coefficients of amplitudes of the reflected CP-, CT- and SV-type waves, respectively, and

𝜁𝑗 =
𝜔2

𝑐2𝑝𝑐
2
𝑗

(
𝑐2𝑗 − 𝑐2𝑝 + 𝜀2𝜔2

)
, 𝑗 = 1, 2. (32)

The amplitude ratios of the reflected waves are defined as the ratios of the amplitudes of the reflected waves to the amplitude

of the incident wave and are determined by the well-defined boundary conditions on the surface 𝑧 = 0.

4.1 Boundary conditions
We assume the surface 𝑧 = 0 to be rigidly fixed and thermally insulated. These can be expressed mathematically as

𝑢 = 𝑤 = 𝜕Θ
𝜕𝑧

= 0, at 𝑧 = 0. (33)

In terms of the potential functions 𝜙 and 𝜓 , the rigid boundary conditions in (33) are simplified to

𝜕𝜙

𝜕𝑥
− 𝜕𝜓

𝜕𝑧
= 𝜕𝜙

𝜕𝑧
+ 𝜕𝜓

𝜕𝑥
= 0, at 𝑧 = 0. (34)

In order to satisfy the above boundary conditions at the free surface 𝑧 = 0, the following relation must be hold on 𝑧 = 0:

𝑘1 sin 𝜃0 = 𝑘1 sin 𝜃1 = 𝑘2 sin 𝜃2 = 𝑘3 sin 𝜃3, (35)

which can also be written in the form

𝜃0 = 𝜃1 and
sin 𝜃0
𝑉1

=
sin 𝜃2
𝑉2

=
sin 𝜃3
𝑉3

. (36)

In we neglect the thermal effect, then (36) reduces to

𝜃0 = 𝜃1 and
sin 𝜃0√
𝑐2𝑝 − 𝜀2𝜔2

=
sin 𝜃3√
𝑐2𝑠 − 𝜀2𝜔2

. (37)

Further, in absence of the elastic nonlocality (𝜀 = 0) from the medium, relation (37) becomes

𝜃0 = 𝜃1 and
sin 𝜃0
𝑐𝑝

=
sin 𝜃3
𝑐𝑠

, (38)

which is the well-known Snell’s law. We now consider the following two cases separately:

4.2 Incident CP-wave at the thermally insulated rigid boundary
Inserting from Equations (29)–(31) into the boundary conditions (33) and (34) and using the relation (35), the following system

of equations for the amplitude ratios, namely 𝑅𝐶𝑃 = 𝐴1∕𝐴0, 𝑅𝐶𝑇 = 𝐴2∕𝐴0, 𝑅𝑆𝑉 = 𝐵1∕𝐴0 of the reflected CP-, CT- and
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SV-type waves, respectively are obtained:

⎡⎢⎢⎢⎣
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑅𝐶𝑃

𝑅𝐶𝑇

𝑅𝑆𝑉

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
−𝑎11
𝑎21

𝑎31

⎤⎥⎥⎥⎦
, (39)

where

𝑎11 = 𝑘1 sin 𝜃0, 𝑎12 = 𝑘2 sin 𝜃2, 𝑎13 = −𝑘3 cos 𝜃3,

𝑎21 = 𝑘1 cos 𝜃0, 𝑎22 = 𝑘2 cos 𝜃2, 𝑎23 = 𝑘3 sin 𝜃3,

𝑎31 = 𝜁1𝑘1 cos 𝜃0, 𝑎32 = 𝜁2𝑘2 cos 𝜃2.

After solving (39), we may write the amplitude ratios in the following forms

𝑅𝐶𝑃 =
𝜁1 cos 𝜃0 cos

(
𝜃2 − 𝜃3

)
− 𝜁2 cos 𝜃2 cos

(
𝜃0 + 𝜃3

)
𝜁1 cos 𝜃0 cos

(
𝜃2 − 𝜃3

)
− 𝜁2 cos 𝜃2 cos

(
𝜃0 − 𝜃3

) , (40)

𝑅𝐶𝑇 = −
𝜁1𝑘1 sin 2𝜃0 sin 𝜃3 sec 𝜃2

𝑘2
[
𝜁1 cos 𝜃0

(
cos 𝜃3 + sin 𝜃3 tan 𝜃2

)
− 𝜁2 cos

(
𝜃0 − 𝜃3

)] , (41)

𝑅𝑆𝑉 =
𝑘1
(
𝜁1 − 𝜁2

)
sin 2𝜃0 cos 𝜃2 csc 𝜃3

𝑘3
[
𝜁1 cos 𝜃0

(
sin 𝜃2 + cos 𝜃2 cot 𝜃3

)
− 𝜁2 cos 𝜃2

(
sin 𝜃0 + cos 𝜃0 cot 𝜃3

)] . (42)

We note that, the amplitude ratios depend on the elastic properties of the medium, elastic nonlocality, and the angle of inci-

dence.

In absence of the thermal field as well as the elastic nonlocality from the medium, Equations (20) and (38) give

𝑐1 = 𝑐𝑝, 𝑐2 = 0, 𝜃0 = 𝜃1 and
sin 𝜃0
𝑐𝑝

=
sin 𝜃3
𝑐𝑠

, (43)

and the amplitude ratios reduce tow

𝑅𝐶𝑃 =
cos

(
𝜃0 + 𝜃3

)
cos

(
𝜃0 − 𝜃3

) , 𝑅𝐶𝑇 = 0, 𝑅𝑆𝑉 =
𝛿 sin 2𝜃0

cos
(
𝜃0 − 𝜃3

) . (44)

These expressions are in complete agreement with the corresponding results as reported by Achenberg [44] except the term

𝛿 in 𝑅𝑆𝑉 which is missing in Achenberg [44].

5 ENERGY PARTITIONING

In order to physically justify the analytic expressions of the amplitude ratios in the present problem, we just need to verify the

energy balance law at the boundary surface 𝑧 = 0. Let us consider the energy partition between the various reflected waves at

a surface element of the unit area. Following Achenberg [44], the energy flux across the surface element, that is, rate at which

the energy is communicated per unit area of the surface is represented as

𝑃 = 𝜏𝐿
𝑙𝑚
𝑢̇𝑙𝑛𝑚, (45)

where 𝑛𝑚 are the direction cosines of the unit normal outward to the surface element, and 𝑢̇𝑙 are the components of the particle

velocity. Here the summation convention is implied.

Note that here, the term corresponding to heat flux must be included in the expression of energy carried. Moreover, the

interactional energy between different pairs of the waves must also be included. Now, in our present manuscript, we did not

account these energies, because of following reasons: The contribution of interaction energy as well as of thermal energy is so

small that even if it is accounted, it does not change the results qualitatively. This is our experience and we have seen it in other
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problems that these energies are just for the name sake. Their amount is of order of 10−5 for all angles of incidences. That is why

the sum of the energy ratios does not change qualitatively. However, some physical situations may arise where the contribution

of the thermal energy as well as the interaction energy is comparable to the other energies and in that cases it is essential to

include these energies [cf. Li et al. [45, 46], Li and Wei [47]].

For the incident CP-wave, let ⟨𝑃0⟩ denotes the time-average stress power, ⟨𝑃1⟩ and ⟨𝑃2⟩, respectively denote the time-average

stress power for the reflected CP- and CT-waves and ⟨𝑃3⟩ denotes the time-average stress power for the reflected SV-type wave.

We define the energy ratio 𝐸𝛼 corresponding to the 𝛼−th reflected wave on 𝑧 = 0 as the ratio of the energy carried along with

the 𝛼−th reflected wave to the energy carried along the incident CP-wave i.e.,

𝐸𝛼 =
⟨𝑃𝛼⟩⟨𝑃0⟩ , 𝛼 = 1, 2, 3. (46)

Thus, for the incident CP-wave, the analytical expressions for the energy ratios, 𝐸𝐶𝑃 , 𝐸𝐶𝑇 and 𝐸𝑆𝑉 of the reflected CP-,

CT- and SV-type waves, respectively, may be obtained by using Equations (7), (8), (29)–(31) along with (45) and (46) as:

𝐸𝐶𝑃 = −𝑅2
𝐶𝑃

, 𝐸𝐶𝑇 = −
(𝑘22 + 𝜁2) tan 𝜃0
(𝑘21 + 𝜁1) tan 𝜃2

𝑅2
𝐶𝑇

, 𝐸𝑆𝑉 = −
𝛿2𝑘23 tan 𝜃0

(𝑘21 + 𝜁1) tan 𝜃3
𝑅2
𝑆𝑉

, (47)

where 0◦ < 𝜃0 < 90◦. Like the amplitude ratios, the energy ratios also depend on 𝜃0, material properties of the nonlocal ther-

moelastic medium, and the amplitude ratios. Since, surface waves are not involved in the energy conservation principle, so the

conservation of energy at the surface 𝑧 = 0 may be stated as:

𝐸𝑠𝑢𝑚 = |𝐸𝐶𝑃 + 𝐸𝐶𝑇 + 𝐸𝑆𝑉 | ≈ 1. (48)

6 NUMERICAL RESULTS AND DISCUSSIONS

With an aim to discuss the characteristics of plane harmonic wave propagation through a nonlocal thermoelastic material of type

III, we have computed their phase speeds and the corresponding attenuation coefficients for a specific thermoelastic model of

crust like material. The amplitude ratios and the corresponding energy ratios of the reflected CP-, CT- and SV-type waves due to

the incident CP-wave have also been computed numerically and presented graphically to depict the effect of elastic nonlocality.

The material chosen for this purpose is crust, whose material properties are read from Sarkar et al. [43] as follows:

𝜆 = 𝜇 = 3.0 × 1010 𝑁.𝑚−2, 𝑇0 = 300 𝐾, 𝜌 = 2900 𝑘𝑔.𝑚−3, 𝐶𝐸 = 1100 𝐽 .𝑘𝑔−1.𝐾−1

𝐾𝑇 = 3.0𝑊 .𝑚−1.𝐾−1, 𝛼𝑇 = 1.0667 × 10−5 𝐾−1, 𝜀Θ = 0.00268, 𝜔 = 0.1.

Following [41], we have taken 𝜈2 = (𝜆 + 2𝜇)∕𝜌, 𝐾∗ = 𝐶𝐸(𝜆 + 2𝜇)∕4, 𝑐𝑝 = 1.0, and 𝑐𝑡 = 0.5. Then we found 𝑐𝑠 = 0.4994.

Taking the constant 𝑒0 = 0.39 [1] and choosing 𝑎 = 1 nm, 𝑙 = 1 nm, the the value of the nonlocal parameter, 𝜀 (dimensionless)

can be obtained as, 𝜀 = 2.3102. The non-dimensional value of angular frequency is taken as 𝜔 = 0.1.

Figure 2a-c depict the variations of the absolute values of amplitude ratios 𝑅𝐶𝑃 , 𝑅𝐶𝑇 and 𝑅𝑆𝑉 of the reflected CP-, CT- and

the SV-type waves, respectively due to the incident CP-wave with respect to the angle of incidence 𝜃0 in the range (0◦ ≤ 𝜃0 ≤

90◦) for nonlocal generalized thermoelasticity of type III (NGN III) and local generalized thermoelasticity of type III (LGN

III). From Figure 2a, we conclude that the absolute values of 𝑅𝐶𝑃 are found to be decreasing for 0◦ ≤ 𝜃0 ≤ 61◦) in NGN III,

thereafter it increases as 𝜃0 increases. The maximum of |𝑅𝐶𝑃 | attains at 𝜃0 = 0◦, 90◦ for both NGN III and LGN III cases. In

Figure 2b, the amplitude ratio |𝑅𝐶𝑇 | is found to be larger for NGN III as compared to LGN III at each 𝜃0 in contrast to the

amplitude ratio |𝑅𝑆𝑉 | (Figure 2c). It is also evident from Figures 2b and 2c that the maxima of |𝑅𝐶𝑇 | and |𝑅𝑆𝑉 |, respectively

occur at 𝜃0 = 65◦ and 𝜃0 = 45◦ for both types of NGN III and LGN III. Moreover, we see that |𝑅𝑆𝑉 | first increases in the range

0◦ ≤ 𝜃0 ≤ 45◦ and then decreases for 45◦ < 𝜃0 ≤ 90◦. Both the amplitude ratios 𝑅𝐶𝑇 and 𝑅𝑆𝑉 are zero at 𝜃0 = 0◦, 90◦ for

both types of NGN III and LGN III. Figure 2c also exhibits that |𝑅𝑆𝑉 | is symmetrical about 𝜃0 = 45◦. Figure 3a-c is plotted to

examine how the amplitude ratios |𝑅𝐶𝑃 |, |𝑅𝐶𝑇 | and |𝑅𝑆𝑉 | vary with the dimensionless nonlocal parameter 𝜀. Here we choose

the range of the dimensionless nonlocal parameter 𝜀 as 0 ≤ 𝜀 ≤ 2 for fixed 𝜃0 = 45◦. We observe that the amplitude ratios |𝑅𝐶𝑃 |
and |𝑅𝐶𝑇 | increase with the increase of 𝜀 for both the cases (NGN III and LGN III). On the contrary, the amplitude ratio |𝑅𝑆𝑉 |
is found to be decreasing with increasing 𝜀.
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Figure 4a-c express a comparison of the energy ratios |𝐸𝐶𝑃 |, |𝐸𝐶𝑇 | and |𝐸𝑆𝑉 | of the reflected CP-, CT- and SV-type waves,

respectively due to the incident CP-wave with 𝜃0 for NGN III and LGN III cases. In Figure 4a, we notice that starting from the

maximum at 𝜃0 = 0◦, the energy ratio |𝐸𝐶𝑃 | decreases and vanishes at 𝜃0 = 61◦ (approximately), then it increases to reach its

maximum as 𝜃0 increases further in both the NGN III and LGN III. Figure 4b, c reveal the curves of the energy ratios |𝐸𝐶𝑇 |
and |𝐸𝑆𝑉 | for NGN III are remaining upper than that in LGN III while the curve of |𝐸𝐶𝑃 | for NGN III is remaining upper than
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F I G U R E 4 Variation of (a). |𝐸𝐶𝑃 |, (b). |𝐸𝐶𝑇 |, and (c). |𝐸𝑆𝑉 | with 𝜃0 for NGN III and LGN III

that for LGN III only in the range 0◦ ≤ 𝜃0 ≤ 61◦. It is also evident that the profiles of the energy ratios with respect to 𝜃0 are

qualitatively similar to the corresponding profiles of the amplitude ratios as shown in Figure 2a-c, apart from the magnitudes for

both types of NGN III and LGN III. This is quite appealing as the energy ratios are proportional to the square of the corresponding

amplitude ratios at each angle of incidence. The energy carried along the reflected CT-wave is the least which in turn means that

the maximum amount of the incident energy is carried along the reflected CP- and the SV-type waves. The changes in the energy

ratios with respect to 𝜀 are depicted through Figure 5a-c. It is revealed that the absolute values of energy ratios obtained for NGN

III case are remaining smaller when compared to those obtained for the LGN III case. So, the presence of elastic nonlocality

makes the energy ratios weaker.

In order to validate the numerical results about the reflected energy ratios, the energy conservation principle is checked up

in Figure 6a-c in case of NGN III. The energy conservation principle requires that “the output energy fluxes are equal to the

input energy flux at the same area” of the thermally insulated rigidly fixed surface 𝑧 = 0. The energy ratio |𝐸𝐶𝑇 |, carried along

the reflected CT-wave, is plotted after mounting up its original value by 103 in Figure 6a. The curves indicated by “𝐸sum” in

Figure 6a-c keep nearly unit value in the total range of 𝜃0, which means that the energy conservation law is satisfied at each

𝜃0. Hence, it is found that there is no dissipation of energy at the boundary surface 𝑧 = 0 during the reflection of thermoelastic

waves. However, Figure 6c shows a smaller deviation from the unity of the energy conservation index, 𝐸sum which is attributed

to the loss of numerical precision. The approximate satisfaction of the energy conservation law validates the present numerical

results to a large extent. From Figure 6c, it is evident that for different values of the elastic nonlocality parameter 𝜀, the energy

balance law is also satisfied up to a large extent at a fixed angle of incidence.

To investigate the effect of the dimensionless elastic nonlocality parameter, 𝜀 on the existing coupled longitudinal and shear

type waves in NGN III, we have plotted the phase speeds 𝑉𝑖 (𝑖 = 1, 2, 3) and the corresponding attenuation coefficients 𝑄𝑖

against 𝜀 in the range 0 ≤ 𝜀 ≤ 2 through Figure 7a-c. These figures clearly reveal that all the three phase speeds decrease when

𝜀 increases. It is also interesting to note that the CP- and CT-waves are dispersive and experience attenuation while though the

SV-type wave is dispersive, it is not experiencing any attenuation in the selected range of 𝜀. Figure 7a, b depict that the CP-wave

is the fastest while SV-type wave is the slowest one.

The phase speed and the corresponding attenuation coefficient of the SV-type wave have been depicted in Figure 8. From

this figure, we note that the SV-type wave is dispersive and non-attenuating in the range: 0.01 ≤ 𝜔 < 0.24991, beyond which

the wave is not a propagating wave. This is the verification of a result pointed out theoretically in the text. It can also be verified

that 𝜔 ≡ 𝜔𝑐3
= 0.24991 is correct.
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F I G U R E 6 Variations of the energy ratios and their sum (𝐸𝑠𝑢𝑚) for NGN III

7 CONCLUSIONS

This manuscript presents a mathematical treatment to discuss the harmonic plane waves in a thermoelastic medium by employing

the Green-Naghdi theory of type III (GN model with energy dissipation) of generalized coupled thermoelasticity and Eringen’s

nonlocal theory of elasticity. The analytical expressions giving the reflection coefficients and the corresponding energy ratios
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of various reflected waves due to the incident CP-wave waves are shown graphically. From the analysis of the illustrations, the

following points can be noted:

(i) Similar to the local thermoelastic medium, three types of thermoelastic plane waves (CP-, CT- and SV-type) may prop-

agate in a nonlocal thermoelastic medium with distinct phase speeds. The coupled longitudinal waves (CP- and CT-) are

dispersive and experience no attenuation. The SV-type wave is also dispersive but exhibits no attenuation at low-frequency

range due to the presence of the elastic nonlocality. Moreover, the SV-type wave is unaffected by the thermal wave effect

in contrast to the CP- and CT-waves.

(ii) The presence of elastic nonlocality reduces the classical vertically shear (SV) wave speed. The SV-type wave faces a critical

frequency in the nonlocal medium considered.

(iii) The numerical results display that the phase speeds, attenuation coefficients, amplitude ratios and the energy ratios of

various reflected waves are significantly affected by the elastic nonlocality.

(iv) It is observed from the numerical results that the maximum amount of the incident energy is carried along the reflected

CP-wave and SV-type wave. It is also evident that the sum of the modulus values of the energy ratios is approximately

unity at each angle of incidence which in turn means that the energy conservation law is satisfied during the reflection of

the thermoelastic waves in a nonlocal thermoelastic medium.

(v) The introduction of the elastic nonlocality into the generalized thermoelasticity gives a more realistic model for the study

of harmonic plane waves in thermoelastic solids. The authors believe that the present theoretical investigation may provide

some interesting information for experimental scientists/ researchers/seismologists working on this subject.
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